行业新闻

反循环清孔工艺在旋挖桩中的优势

发布者:君小豪
旋挖钻机是一种适合建筑基础工程中成孔作业的施工机械,目前广泛用于市政建设、公路桥梁、铁路、水利、高层建筑等基础桩施工工程。旋挖钻机成孔灌注桩技术被誉为“绿色施工工艺” ,具有工作效率高、施工质量好、尘土泥浆污染少、机动灵活及多功能特点,并适应我国大部分地区的土壤地质条件。旋挖钻进工艺代表了当今的先进水平,具有巨大的发展潜力,是今后桩基施工技术的发展方向之一。

旋挖钻机是一种多功能、高效率的灌注桩桩孔的成孔设备,可以实现桅杆垂直度的自动调节和钻孔深度的计量;旋挖钻孔施工是利用钻杆和钻斗的旋转,以钻斗自重并加液压作为钻进压力,使土屑装满钻斗后提升钻斗出土;通过钻斗的旋转、挖土、提升、卸土和泥浆置换护壁,反复循环而成孔。此方法自动化程度和钻进效率高,钻头可快速穿过各种复杂地层,在桩基施工中具有非常广阔的前景。

但旋挖灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从孔壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或孔壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。

在钻孔灌注桩的相关施工规范及设计文件中,明确要求沉渣厚度小于10cm,且一般工程桩基施工地质条件复杂、多变,因此沉渣厚度控制是成孔质量控制的难点和重点。因为从提钻到灌注砼,对于深桩来说通常需要1个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从孔壁上挂落部分泥块,这些就构成沉渣,可能会超过设计或规范要求,如果不采取措施就灌注混凝土,容易引发各种质量事故。因此,需要在灌注前采用气举反循环清孔工艺进行二次清孔。


2、工艺特点

2.1 清孔彻底:能满足孔底沉淀厚度≤10cm的要求;
2.2清孔速度快:从以往的实践经验情况看,如果正循环清孔情况比较好的话,一般采用反循环二次清孔50分钟左右就可以达到要求;
2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;
2.4经济便捷:本工艺需用的机械设备少,材料用量少,制作简单,方便灵活;


3、适用范围

3.1、 本工艺适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、 适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层


4、施工工艺

4.1清孔的意义
旋挖钻孔深度达到设计要求并符合终孔条件后,应进行清孔。清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
旋挖灌注桩灌注前,由于从提钻到导管陈放完毕这个过程很长,对于钻孔灌注桩来说,必然会使第一次清孔后的沉渣增加,如果不采取措施,沉渣过多,容易引起灌注事故,直接影响桩基的承载力,危及结构安全。因此,必须高度重视灌注前的二次清孔工作。
4.2清孔方式选择的理论依据
沉淀物主要由泥块和沉淀砂砾及岩渣组成。泥块主要是由钢筋笼下放刮落的孔壁泥皮造成的;而砂砾沉淀物主要由泥浆中的悬浮颗粒造成的,岩渣则是旋挖的残留。
确定沉渣颗粒在泥浆处于悬浮状态的临界沉降速度V0的思路是:假定颗粒为球形,其重力为G,颗粒在液体中的浮力为P,球形颗粒在液体中的沉降阻力为R。当G>P时,岩屑下降,速度逐渐增大,R值也随之增大。当R值达到足以使作用在岩屑上的三种力保持平衡时, 即R=G-P时,岩屑将以恒速v0下降。通过推导可得出沉降速度(即雷廷格尔公式)为
4. 3传统正循环清孔法的弊端
正循环清孔是泥浆由钻杆或导管注入孔底,带动沉淀物上浮,在重力作用下泥浆中砂砾等沉淀物有下沉的趋势,如果泥浆泵流量偏小,将出现大颗粒砂砾悬浮在一定高度以下;如果想把大的沉渣颗粒排出孔外,一方面是加大泥浆的循环速度,另一方面是加大泥浆的密度,但是受现有泥浆泵排量的限制,泥浆的循环速度不可能提高很多,加大泥浆比重的方法也不可行。另外因为孔壁处泥浆比孔中心部位流速慢,造成泥浆含砂率不均匀,最终不能将泥浆中大颗粒完全置换到孔外去,因此该传统工法清孔效果并不理想。
如果用正循环清孔,φ1.1m的孔的断面积为0.95m2,常用2PNL砂石泵额定排量为93.33m3/h,假定采用2台并联送水,泥浆携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的,满排量时浆液的上返速度仅达到0.05m/s。根据上述公式可见正循环钻进只有依靠高浓度高密度泥浆来悬浮钻渣,最终端沉渣厚度不能保证符合设计要求,从而容易引发质量隐患。

4.4反循环清孔
4.4.1反循环清孔通常采用两种方式,一种是泵吸反循环,另一种是气举反循环。泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的泥浆流向孔底,将沉渣带进钻杆(导管)内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,泥浆流向孔内,形成反循环。
采用泵吸反循环法进行二次清孔,目前常用4BS砂石泵额定排量为200m3/h,假定采用φ0.3m的导管进行清孔,满负荷时泥浆上返流速可以达到1.58m/s,可以看出该速度远大于钻渣上返所需流速0.29m/s的要求,因此进入导管内的钻渣能够被有效的抽吸上来。
4.4.2 气举反循环
4.4.2.1气举反循环的原理
气举反循环的原理是:压缩空气经风管向导管(排渣管)内送风,风管内的空气与泥浆混合物密度(约为0.6)小于导管(排渣管)内泥浆密度(约为1.1),形成负压区,在大气压的作用下,汽水混合物排出管外;孔底泥浆及沉淀物的混合物沿着导管上升,补充到负压区;为防止孔中泥浆水头过小,及时用泥浆泵将优质(含砂率低)泥浆补充到孔内,并形成循环系统。
4.4.2.2气举反循环的设备
气举反循环的设备非常简单,主要的构造见图1所示。除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h空压机就可完成整套施工工艺。
给出了两种形式的气举反循环设备。形式1是直接利用导管作为排渣管,优点是操作简便、工序转换速度快,现场只要沉放风管即可,缺点是需要的风量较大,需要大型的空压机。形式2是在导管内增加了一根金属排渣管,其缺点是现场操作量比形式1复杂,其优点是现场需要一个较小的空压机就可实现。


5、质量标准及质量控制

清孔完成后,孔底沉渣应严格控制在10cm以内,泥浆指标合格(泥浆相对密度:1.03~1.10;粘度:17~20s;含沙率:<2%),并应立即进行检查验收。检查验收合格后,应立即灌注水下混凝土,以免渣土重新沉淀,造成沉渣过厚而影响桩的承载力。
因为泵吸反循环比较简单,运用较多,在此只提出气举反循环的操作注意事项:
① 出浆管底口距离孔口深度不宜小于30m,以形成足够的备压,但也不能小于5m,否则不能形成有效的反循环体系;
② 出浆管及高压进气管的法兰盘连接紧密,确保不漏气;
③ 气举反循环过程中,保证有足够的优质泥浆补充到孔孔内,并且要在开启反循环前先送浆,时刻观察护筒内泥浆面的变化情况,防止泥浆补充不足,水头下降过大造成塌孔;
④ 为防止孔内沉淀物堵塞出浆管,在气举反循环前,要把导管提离孔底一段距离,待反循环形成后,视出浆清孔逐步下沉;
⑤由于桩孔较大,要左、右移动导管及前后移动平台,使清孔比较彻底。


6、机具设备

6.1泵吸反循环清孔设备:排渣软管、4BS砂石泵。
6.2气举反循环清孔设备:除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h空压机就可完成整套施工工艺。


7、安全措施

7.1、起重安全:本工法用到的主要的施工机械是汽车吊,因此要注意起重安全,严格执行起重操作规程,不能因为起重点重量不大而掉以轻心。
7.2、用电安全:严格用电管理,施工现场的一切电源电路的安装和拆除,必须由持证电工操作,电器必须严格接地、接零和漏电保护器,场地电缆应架空,严禁拖地和埋压土中。


8、环保措施

1)施工机械注意保养,维修时防止油料洒落污染河水;
2)废弃砼,清洗罐车、导管的废水必须集中处理。
3)经常对施工机械进行保养,尽量减少噪音污染。
4)施工过程中的废弃物、边角料、包装袋等及时收集、清理、集中处理。